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Abstract
Motile cells regulate their shape and movements largely by remodeling the actin cytoskeleton.
Principles of this regulation are becoming clear for simple-shaped steadily crawling cells, such
as fish keratocytes. In particular, the shape of the leading edge and sides of the
lamellipodium—cell motile appendage—is determined by graded actin distribution at the cell
boundary, so that the denser actin network at the front grows, while sparser actin filaments at
the sides are stalled by membrane tension. Shaping of the cell rear is less understood. Here we
theoretically examine the hypothesis that the cell rear is shaped by the disassembly clock: the
front-to-rear lamellipodial width is defined by the time needed for the actin-adhesion network to
disassemble to the point at which the membrane tension can crush this network. We
demonstrate that the theory predicts the observed cell shapes. Furthermore, turning of the cells
can be explained by biases in the actin distribution. We discuss experimental implications of
this hypothesis.

1. Introduction

Cell motility depends on a complex dynamic change of cell
shape underlined by remodeling of the cytoskeleton coupled
to the substrate (Ridley et al 2003). Cell shape also affects
cell fate in cell death (Chen et al 1997), development (Nelson
2003) and tumor growth (Vasiliev 2004). Diverse motile
behavior of different cell types results in a great variety of
shapes (Ridley et al 2003). Molecular components determining
these shapes, including the actin–myosin cytoskeleton, cell
membrane and adhesions, are well known, but respective
molecular mechanisms are not completely clear. The
complex questions of how does cell morphology emerge from
interactions between these cytoskeletal components and what
does cell shape reveal about how a cell moves can be addressed
first by studying simple-shaped rapidly crawling cells.

One of these, the half-moon-shaped fish keratocyte
(Rafelski and Theriot 2004), is characterized by a flat, fan-
shaped lamellipodium at the front and sides and a bulbous cell
body in the rear. As they glide on a substrate, keratocytes
maintain nearly constant speed and direction over many cell

lengths (Euteneuer and Schliwa 1984). The lamellipodium is
a broad (tens of microns wide) and flat (about 0.1–0.2 μm
thick) motile appendage of the cell (cell body is but a passive
cargo mechanically) that consists of a branched network of
short actin filaments (Pollard and Borisy 2003) enveloped by
the cell membrane. The actin network treadmills: nascent
filaments branch off the existent filaments at the leading edge
and sides of the lamellipodium and grow forward, advancing
the cell boundary until they are capped. This branching and
growth is localized to the leading edge/sides, while the actin
network disassembles across the lamellipodium (Theriot and
Mitchison 1991). The actin network firmly adheres to the
substrate (Theriot and Mitchison 1991), so the treadmilling of
the actin arrays is translated into the forward translocation of
the cell. Importantly, lamellipodial fragments are able to move
much like the whole cell while preserving the stereotypical
keratocyte shape (Verkhovsky et al 1999) (figure 1). In this
paper, we examine the shape of such a fragment.

A simple geometric principle—the graded radial extension
(GRE) model (Lee et al 1993)—explains how the shape of the
leading edge and sides is regulated (figure 2). The GRE model
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Figure 1. Lamellipodial fragment shape. Phase contrast image of
polarized locomoting lamellipodial fragment of fish keratocyte cell.
Bar, 10 μm. (Image reproduced with permission, courtesy of
K Keren and N Ofer (Technion).)

is based on experimental observations that local extension of
the cell boundary is perpendicular to the cell’s edge. To
maintain a steady shape, the magnitude of extension must
be graded, from a maximum at the center of the leading
edge to zero at the sides (figure 2). More specifically, if
the local rate of extension is equal to v, while the steady
cell speed is equal to V , then the local normal direction to
the cell boundary has to be tilted by the angle θ relative to
the direction of movement, so that cos θ = v/V . Indeed,
if the boundary extends by the increment v�t in the locally
normal direction, this extension translates into the forward
advancement by (v/ cos θ)�t , which has to be equal to V �t
in order to maintain the steady shape and speed. According to
this simple trigonometric formula, this graded protrusion rate
defines the cell’s shape.

The question of how the cell regulates this protrusion rate
along its boundary was answered in Grimm et al (2003) and
Lacayo et al (2007). The answer is based on the observation
that the density of the actin filaments along the leading edge
is graded—maximal at the center and minimal at the sides
(figure 2). According to the model proposed in Keren et al
(2008), polymerizing actin filaments push the cell membrane
from within, generating tension which rapidly equilibrates
across the lipid bilayer (Raucher and Sheetz 2000). At the
center of the leading edge, where actin filament density is
high, the membrane resistance per filament is small, allowing
filaments to grow rapidly and generate protrusion. As filament
density gradually decreases toward the cell sides, the load
force per filament due to membrane tension increases. As a
result, local protrusion rates decrease smoothly from the center
toward the sides of the leading edge, causing the leading edge
to become curved as observed (figure 2). Actin polymerization
is stalled for the cell at the sides, which therefore neither
protrude nor retract.

How the rear of the cell is shaped is less clear. The
observation that cell area is constant (Keren et al 2008) led
to the model of the actin treadmill within an inextensible
membrane bag (Keren et al 2008), according to which the
cell area is simply determined by the total constant surface
area of plasma membrane stretched around the lamellipodial
actin network and tensed by the filaments pushing at the front
and sides. At the rear of the cell, where the actin network
disassembles, this membrane tension crushes the actin network

Figure 2. Model of the lamellipodial shape. Top: the lamellipodial
boundary consists of the curved leading and rear edges and straight
sides parallel to the movement direction. The leading edge shape is
determined by the GRE model (see the text). The rear edge shape is
determined by the front–rear distance Y set by the disassembly clock.
C, S and R denote the front center, front side and rear side of the
lamellipodium. Bottom: the growing actin barbed end density, B, as
the function of the arc length along the leading/side edge, s. At the
rear side, the density is equal to zero. The front side is located where
the actin density is low enough so that the filaments are stalled.

weakened by the disassembly and moves actin debris forwards,
thereby advancing the cell rear.

In this paper, we complement this model with the
hypothesis that the force necessary to crush the actin network
at the rear is proportional to the local network density.
Essentially then, the disassembly of the network throughout the
lamellipodium sets the clock that allows the network retraction
after a certain time interval from the network assembly. We
demonstrate that this hypothesis explains the observed shapes
of the motile lamellipodial fragments.

2. Mathematical model of the cell shape

The leading edge shape can be explained by the model
suggested in Grimm et al (2003), Lacayo et al (2007) and
Keren et al (2008). Along the leading edge, the growing
actin filaments compete for resources (the molecular identity of
which is unknown, but Arp2/3 and/or VASP may be involved)
to branch out nascent filaments, while existing filaments get
capped and lag behind the protruding edge. At the rear corners
of the cell, the density of actin filaments is damped, perhaps
by large adhesion complexes there that appear to compete with
actin polymerization processes for some molecular resources
(the identity of which is, again, unknown; VASP is a likely
candidate (Lacayo et al 2007)). Filaments at the center of the
leading edge may out-compete filaments at the sides because
they are not inhibited by the adhesions at the sides, so the
actin density is peaked at the center. Mathematical analysis
of these processes yielded an inverted parabolic actin filament
distribution (figure 2), also observed experimentally:

B = 3B̄

4L

(
1 −

(
s

L

)2)
. (1)

2



J. Phys.: Condens. Matter 22 (2010) 194118 A Mogilner and B Rubinstein

Here s is the arc length coordinate along the leading edge and
sides, so that s = 0 at the center of the leading edge (C in
figure 2), s = S at the side of the leading edge (S in figure 2),
and s = L at the rear corner of the lamellipodium (R in
figure 2), where the density of the growing filaments pushing
the boundary is assumed to be equal to zero. The total number
of the growing barbed ends along the leading edge and sides is
B̄.

Next, according to the model (Keren et al 2008), an actin
filament grows with rate V = V0(1 − ( f/ fS)

w) against the
force f . Here fS is the stall force at which the filament
stops growing, w is the parameter characterizing the shape of
the force–velocity relation and V0 is the free polymerization
rate. Assuming that the constant membrane tension (force
per unit length of the edge) resists actin growth and that the
membrane force is shared equally by local actin arrays, the
force per filament is inversely proportional to the actin density,
f = T/B . Substituting these formulae into (1), we derive the
local extension rate of the leading edge:

V (s) = V0

(
1 −

(
T

fS B(s)

)w)
. (2)

Then, the shape of the leading edge is determined by the GRE
formula (figure 2):

cos[θ(s)] = V (s)

V
, (3)

where the cell speed is defined as

V = V (0) = V0

(
1 −

(
T

fS B(0)

)w)
= V0

(
1 −

(
4LT

3 fS B̄

)w)
.

(4)
The length of the leading edge, 2S, is determined by the
condition that the force per filament at the side of the leading
edge is equal to the stall force:

Bside fS = 3B̄

4L

(
1 −

(
S

L

)2)
fS = T . (5)

At the sides of the lamellipodium (segment SR in figure 2), the
actin density is so low that the force per filament is greater
than the stall force, and we assume that at such forces the
filaments do not grow. Then, according to the GRE model,
the sides are straight and parallel to the direction of movement
(figures 1 and 2). The recent data indicates that stalling for the
actin network most likely means either buckling of individual
filaments (Chaudhuri et al 2007) or stopping of the growth,
but not depolymerization (Parekh et al 2005). What exactly is
the mechanism of the stall, in fact, does not matter, as long as
the stall force per filament is constant on average (Schaus and
Borisy 2008).

Equations (1)–(5) are the same as those in the model
of Keren et al (2008). The novel part of the cell shape
model is based on three assumptions. First, we assume that
the F-actin network in the lamellipodium disassembles at the
constant rate γ . For any material point in the lamellipodium,
this means that the filament density decreases with time
exponentially, ∼ exp[−γ t]. Because the cell moves steadily

with speed V , this means that the filament density decreases
exponentially with distance y to the rear from the leading
edge, ∼ exp[−γ y/V ]. Thus, if the front-to-rear width of the
lamellipodium at the point with arc length coordinate s at the
leading edge is Y (s) (figure 2), then the local filament density
at the rear is B(s) exp[−γ Y (s)/V ].

Second, we assume that at the rear edge the membrane
tension is constant and equal to that at the front and sides.
Third, the actin network is crushed by the membrane tension
when the force per filament exceeds the constant breaking
force, fB (see section 6). Together, these three assumptions
lead to the equation B(s) exp[−γ Y (s)/V ] fB = T , which
leads to the expression for the lamellipodial front-to-rear width
(figure 2):

Y (s) = V

γ
ln

[
fB B(s)

T

]
. (6)

Effectively, the disassembly rate sets the clock, which
measures out the time, 1/γ , slightly altered by the
logarithmic force-dependent factor, after which the actin
network collapses. This time multiplied by the cell speed
determines the lamellipodial front-to-rear width.

Equations (1)–(6), together with the assumptions that the
lamellipodial area, A, is constant, determine the lamellipodial
shape. The constant model parameters are area A, total
number of growing actin filaments maintained by the cell B̄ ,
free polymerization rate V0, stall force fS, breaking force fB,
disassembly rate γ and force–velocity exponent w. In fact, as
the model’s analysis shows, the effective number of parameters
is greatly reduced if

√
A is used as the unit of length, and the

combination B̄ fS/
√

A is used as the unit of force. Then, just
three non-dimensional parameters—α = fB/ fS (ratio of the
breaking to stall forces per filament), β = γ

√
A/V0 (ratio of

the time in which the cell crawls one body length to the actin
disassembly time) and w—determine the model behavior and
cell shape.

A few aspects of the model are worth a brief discussion.
First, according to equation (1), the density of the growing
filaments at the rear corner of the cell (R in figure 2) is equal
to zero. However, very near this corner at the rear edge, the
density of the weakened disassembling actin network is equal
to the ratio T/ fB. This is not a contradiction, other than
the assumption that the narrow band of the growing pushing
filaments is infinitely narrow, and the sides are precisely
straight. In the model, the length of the sides is determined
by the disassembly of the actin network in the vicinity of the
rear corners of the cell. Note also that the actin density is
observed to increase drastically near the rear (Svitkina et al
1997): however, we hypothesize that this increase is due to
actin debris that do not contribute to the force balance at the
rear edge.

Second, adhesion to the substrate, which is essential for
translating the actin treadmill into forward translocation of
the cell, can also be an important part of the disassembly
clock. Indeed, it appears that the adhesion of the keratocytes
is graded—stronger at the front and weaker at the rear (Lee
and Jacobson 1997, Anderson and Cross 2000). One attractive
hypothesis (Lee and Jacobson 1997) explaining this fact is that
rapid assembly of integrin, talin, vinculin and other adhesion

3
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molecules takes place at the front followed by slower ageing
of the adhesion complexes. This hypothesis is similar to
the mathematical model (Choi et al 2008) predicting that
the adhesions assemble into a maximal density at a very
small, submicron distance behind the leading edge and then
disassemble exponentially. In fact, very recent data (Digman
et al 2009) suggests that the mature adhesions uncouple from
the substrate and disappear together with the actin filaments
to which they attach. Thus, the adhesions could disassemble
with the same rate as the actin network, and their density
could follow the same pattern ∼ exp[−γ y/V ] as that of actin:
because of the cell translocation, the adhesions weaken by the
time the cell rear catches up with them. So, it could be that the
membrane tension has to be balanced by the force of removing
these adhesions. The mathematical formalism of the model
would not change in this case.

Third, molecular processes of the actin network breaking
are largely unknown. A force of the order of 100 pN can
break one filament in two (Tsuda et al 1996) by torsion, but
a smaller force in the range of tens of pN can break a filament
by bending. Actin crosslinks (Delatour et al 2008) and actin-
Arp2/3 bonds (Fujiwara et al 2002) detach rapidly (under a
second) when a force of ∼10 pN is applied. A nN-range force
is sufficient to ‘peel’ the adhesions of hundreds of filaments
off the substrate (Ra et al 1999), which translates into ∼10 pN
per filament to break its adhesion. Finally, perhaps the most
relevant data is the observation and modeling of the fracture of
actin gel (growing around a plastic bead) is reminiscent of the
fracture of a brittle elastic material (van der Gucht et al 2005).
Energy needed to break a filament or an inter-filament crosslink
was estimated as ∼10kBT in this study, which corresponds to
the effective breaking force of 4–40 pN per filament (10kBT ≈
40 pN × nm divided by effective bond breaking deformation
∼1–10 nm). Thus, we assume in the model that the network
breaking means either filaments’ breaking, or crosslink or
adhesion detaching or, most likely, a combination of all these
processes, so that the resulting breaking force per filament is
∼10 pN. The breaking force per filament does not have to be
exactly constant, as far as the total such force is proportional to
the average filament number. Finally, let us note that the exact
processes responsible for the localization of the polymerization
to the leading edge and delocalization of the depolymerization
are not known (Pollard and Borisy 2003). Localization of
signaling molecules such as Rho-family GTPases, PIP2 and
SH3 adapter proteins (activating nucleation-promoting factors
including WASp, N-WASP and Scar/WAVE, making them
available to activate in turn Arp2/3 complex) to the curved
plasma membrane at the leading edge is the key to the first part
of this riddle. The second part depends on delocalization of
ADF/cofilins accelerating F-actin disassembly and slow ageing
of the filaments.

3. Predicted shape of the lamellipodium

We used equations (1)–(6) non-dimensionalized as described
above to compute the lamellipodial shape using the following
numerical iteration procedure: (1) choose some initial half
arc length of the leading edge S and cell speed V ; (2) use

formulae (5) and (6) to compute the membrane tension T
and length of the sides, and then the parameter L; (3) use
formulae (2) and (4) to compute corrected parameter V and
function V (s); (4) compute the shape and the arc length of
the protruding part of the leading edge; (5) use formulae (1)
and (3) to compute the shape of the leading edge and the
x coordinates of the sides ±Xside; (6) use formulae (6) to
compute function Y (s); (7) compute the area using the formula
A = ∫ Xside

−Xside
Y (s(x)) dx ; (8) if the computed area is smaller

than the given parameter A, increase the half arc length of the
leading edge S, else decrease it; and (9) stop when the error of
the area is smaller than 1%.

This iteration procedure converges rapidly, indicating
local stability of the model cell shape. More elaborate
investigation of the stability, in which the model was made
dynamic (the leading edge evolved from an arbitrary shape in
small time steps according to the GRE model, while the actin
density inside the lamellipodium was decreasing exponentially,
and the rear followed the level curve of the critical breaking
density) also confirmed the stability of the cell shape (data not
shown).

The numerical solution produced shapes shown in
figure 3 and their dependence on three non-dimensional model
parameters. The general feature of the predicted shape—
lamellipodium looking like a bent rectangle—was reproduced
by the model. The force–velocity exponent w was estimated
to be between 1 and 10 (Prass et al 2006, Keren et al 2008).
Figure 3(a) illustrates that the exact value of this parameter
does not affect the cell shape significantly. Figure 3(b) shows
that the cell shape is not very sensitive to the ratio of the
breaking to stall forces per filament either, though when this
ratio is closer to 1 (it has to be greater than 1, otherwise the
filaments break before they are stalled, which is very unlikely),
the rear edge becomes convex up, rather than concave up.
Finally, figure 3(c) demonstrates that the cell shape is sensitive
to parameter β , so the rate of disassembly of the actin network,
as well as the cell area and speed are important factors
determining the cell shape. The parameters tried give the
aspect ratio of the shape (see below) close to 2, which is the
average observed value (Keren et al 2008). The model makes
the following prediction testable in the future: the radius of
curvature of the rear edge of the lamellipodial fragment is
greater than or equal to that of the leading edge.

4. Approximate analytical results for the
lamellipodial shape

Figure 3 demonstrates that in the wide range of parameters (in
fact, the only requirement is that w � 1, which is the case)
the lamellipodium has roughly a rectangular shape. Also, for
the realistic parameter values, V ≈ V0 (see also Keren et al
2008 for relevant discussions). This suggests the approximate
equation for the aspect ratio of the lamellipodium. Indeed,
because Bside fS = T and Bside exp[− γ Y

V0
] fB = T , where Y is

the approximate front-to-rear width of the lamellipodium, then
Y = (V0/γ ) ln[ fB/ fS]. If X is the side-to-side lamellipodial
length, then X = A/Y , and we predict the following aspect

4
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a b

c

Figure 3. The lamellipodial shapes predicted by the model. For all shapes, the total constant lamellipodial area A is the unit of area, and the
unit of length is equal to

√
A. (a) Two shapes characterized by the exponents of the force–velocity relation w = 2, 6;α = 3, β = 2.5 (the

leading and rear edges are flatter for higher values of w). (b) Three shapes characterized by the breaking/stall force ratios
α = 2, 3, 4;β = 2.5, w = 6 (the higher the ratio, the greater the front-to-rear width of the lamellipodium). (c) Three shapes characterized by
the non-dimensionalized disassembly rates β = 1.5, 2.5, 3.5;α = 3, w = 6 (the greater the disassembly rate, the smaller the front-to-rear
width of the lamellipodium).

ratio of the lamellipodium:

X

Y
= 1

ln[ fB/ fS]
Aγ 2

V 2
0

. (7)

This formula explains why the lamellipodial shape is not
very sensitive to the ratio of the breaking to stall forces
per filament: this ratio affects the shape through the slowly
varying logarithmic factor. Equation (7) predicts that the aspect
ratio increases with the membrane area (which agrees with
the observations (Keren et al 2008)), with the rate of actin
disassembly and decreases with cell speed. The last prediction
does not agree with the data in Keren et al (2008), but it
is possible that the actin disassembly rate is greater in faster
moving cells.

5. Asymmetric actin density causes cell turning

The actin distribution along the leading edge can vary in
time and space (Keren et al 2008), or it can be altered by
external or intracellular signals. Therefore it is interesting to
see how the shape and movement of the cell change if the actin

filament density becomes skewed (figure 4). We investigated
the consequences of the actin distribution along the leading
edge and sides of the form

B = 3B̄

4L

(
1 −

(
s

L

)2

+ ε

[
−

(
s

L

)
+

(
s

L

)3])
, (8)

such that the maximum of the distribution is shifted to the
left by the distance χ = ε

√
A/2, where ε is a small non-

dimensional parameter. In this case, the condition defining
location of the cell sides remains B = Bside. Because the actin
distribution is skewed to the left, the arc length coordinates
of the front side corners also shift to the left, s ≈ ±S − δ

(figure 4), so the length of the left side , l1, becomes shorter
than that of the right side, l2 (figure 4).

According to the disassembly clock hypothesis, the times
that pass from the actin assembly at the front sides of the cell
to disassembly of these actin arrays at the rear corners of the
lamellipodium have to be equal, because the actin densities at
the front sides are equal. If the cell continues to move steadily
along the straight path, this is impossible: l1/V �= l2/V . The
only steady state solution in this case corresponds to the cell
moving along a curvy path (curving to the left with radius of

5
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1.2

1

0.8

0.6

0.4

0.2

0

-0.2
0.5 -1 -0.5 0 0.5 1 1.5

Figure 4. Cell turning. Top: computed shape of the cell turning to
the left. The cell sides become radial arcs; the right side of the cell
slightly lags behind the left side. The total constant lamellipodial
area A is the unit of area, and the unit of length is equal to

√
A.

Bottom: the F-actin distribution skewed to the left causing the
lamellipodial deformation and left turning shown at the top. The
stalling condition at the front sides and zero actin density condition at
the rear sides determine the arc lengths of the sides and leading edge.
Explanations of the notations are in the text.

curvature R) with angular velocity ω = V/R. Then, because
the left and right sides move with linear velocities ωR and
ω(R + l), respectively, the times of disassembly along the left
and right sides are equal if l1

ωR = l2
ω(R+l) . (Here l is the

lamellipodial length, see figure 4.) Thus, l1(R + l) = l2 R and
the radius of curvature of the cell path is given by the formula

R = l
l2

l2 − l1
. (9)

To find this radius and the cell shape, we consider for simplicity
the case in which the cell aspect ratio is approximately equal
to 2, and Bside = 3

4 B(0). In this symmetric (non-dimensional)
case, L = √

2, l = √
2 ≈ S, l1 = l2 = 1/

√
2. The shift of the

arc length coordinates of the front side corners also to the left,
s ≈ ±S − δ, can be found using the condition Bside = 3

4 B(0),
which in the case of the asymmetric distribution (8) has the
form (1 − ( S+δ√

2
)2 + ε[−( S+δ√

2
) + ( S+δ√

2
)3]) = 3

4 . Approximate

solution of this equation is δ ≈ − 3ε

4
√

2
, so l ≈ √

2, l1 ≈
1√
2

− 3ε

4
√

2
, l2 ≈ 1√

2
+ 3ε

4
√

2
. According to equation (9), the

radius of curvature of the path along which the cell moves and
the angular speed of the cell are

R ≈ 2l

3ε
≈

√
A

ε
≈ A√

2χ
, ω ≈

√
2χV

A
, (10)

where χ is the shift of the maximum of the actin distribution
from the center.

The shape of the cell in this case can be found by simply
taking into account that the linear advancement rate along the
curvy path of the point at the leading edge with coordinate s
is approximately V (1 + s+χ

R ). Then, according to the GRE
model, V (1 + s+χ

R ) cos[θ(s)] = V (s), and

cos[θ(s)] = V (s)

V (1 + s+χ

R )
. (11)

The front-to-rear width of the lamellipodium can be found
using the formula

B(s) exp

[
− γ Y (s)

V (1 + (s + χ)/R)

]
fB = T . (12)

Using equations (2), (4), (8), (11) and (12), formula (10) for
the radius of the left side of the cell (figure 4), and the iteration
procedure described above, we obtained the asymmetric shape
of the turning cell shown in figure 4. The right side of the
cell turning to the left lags behind the left side, and the left
side is shorter than the right one. The most advanced point
of the leading edge is shifted to the left. One interesting
possibility that has to be explored in the future is that the
turning movement and the skewing of the F-actin distribution
are involved in a feedback, making the turning behavior more
stable and predictable.

6. Discussion

Here we explored mathematically the hypothesis that the
actin network breaks when the force per filament exceeds a
certain threshold. Assuming that the membrane tension at
the lamellipodial rear is the source of the breaking force and
that the actin network disassembles across the lamellipodium
with a constant rate, we demonstrated that this hypothesis
predicts the observed characteristic bent rectangular shapes of
the keratocyte lamellipodia. Effectively, the disassembly rate
sets the clock, which measures out the time after which the
actin network collapses. This time multiplied by the cell speed
determines the lamellipodial front-to-rear width. The model
makes the testable prediction: the radius of curvature of the
rear edge of the lamellipodial fragment is greater than or equal
to that of the leading edge. Furthermore, we demonstrated
that, if the F-actin distribution at the leading edge becomes
skewed, asymmetric, then the cell, according to the model, will
turn in the direction of the maximum of the F-actin density.
This prediction can be tested in the future, because the F-actin
density fluctuates significantly both in space and in time due
to natural stochasticity of the branching and capping processes
(Keren et al 2008). Perhaps more importantly, this prediction
is relevant to significant recent interest in mechanisms of cell
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changing direction of migration in response to environmental
signals through remodeling of the actin cytoskeleton (Sidani
et al 2007, Wessels et al 2007).

The model we explored here has a number of limitations,
the main one of which is the absence of a myosin-induced
contractile stress at the rear of the lamellipodium that causes
a centripetal flow of the actin network (Schaub et al 2007).
Myosin does not seem to be crucial for movement: keratocytes
continue to move after it is inhibited, albeit slower and with
less regular shapes (Keren et al 2008). However, myosin that
is swept to the rear as the cell moves forward helps to contract
the actin network weakened by depolymerization, probably
contributing to pulling the cell body forward (Svitkina et al
1997), as well as to F-actin disassembly accelerating the actin
treadmill, and to pulling inward the cell sides, containing
their spread. Most importantly, myosin-induced forces and
movements seem to contribute significantly to the cell turning
behavior (Barnhart 2009). The model will have to be tested
by correlating time series for the angular velocity, cell shape
asymmetry and F-actin distribution asymmetry in the case
of the myosin-inhibited cells. Then, the same correlations
have to be re-examined in addition to time series of the
myosin distribution, and the model will have to be expanded
to include the myosin effects. Another limitation stems from
recent observations that the disassembly rate varies across
the lamellipodium (Schaub et al 2007). Also, we have
yet to investigate what effect could the membrane-associated
proteins, as well as the adhesion complexes at the ventral
surface, have on the tension distribution across the plasma
membrane. The model conclusions would remain valid as far
as the membrane tension equilibrates rapidly (on the 10 s scale
or faster) and does not vary more than an order of magnitude
spatially.

An alternative possibility for the rear edge shaping
mechanism is that the transverse actin bundle that lies along
the rear is under tension. Then, the radius of curvature, r ,
of the rear edge would be determined by the Laplace law:
r = F/T , where F is the tensile force in the bundle and T
is the membrane tension (force per unit length) (Bar-Ziv et al
1999, Kozlov and Mogilner 2007). The tensile force, very
likely, depends on the myosin-generated contraction. Testing
this possibility is not going to be easy, because this tensile force
also depends on the strength of the large adhesions in the rear
corners of the lamellipodium (Lacayo et al 2007) where the
transverse actin bundle terminates. This strength, in turn, could
depend on the myosin-generated contraction (Balaban et al
2001). It is also possible that a combination of the disassembly
clock mechanism and actin–myosin bundle tension mechanism
are responsible for the rear edge shape.

Last, but not least, the cell body may not be entirely
passive, ‘riding’ on the treadmilling actin network (Anderson
et al 1996). Further research on the mechanisms of the
cell body mechanical coupling to the lamellipodium and
comparison of the lamellipodial fragments lacking the cell
body and whole cells will be needed to evaluate this factor
for the cell shaping. Finally, it is worth noting that many of
the more complex and slowly moving motile cells, such as
fibroblasts, have long tails at the rear that seem to be stuck

to the surface because of the large mature focal adhesions
(Lewis et al 1982). Special mechanisms including directed
endo/exocytosis and regulation of the dynamic graded
adhesion are deployed by the cell to retract those tails (Ridley
et al 2003). In such cells, it is unclear whether the membrane
area and tension are the factors limiting motility, so the relation
of our model to such tails is an open question. Furthermore,
in three-dimensional motility through an extracellular matrix,
recent data (Doyle et al 2009) indicates that the cell is less
restrained by the membrane at the rear and relies more on
the actin–myosin contraction to pull up the rear. In the
future, modifying the model to remove these limitations and
indeterminacies by comparison with quantitative data, and
then testing whether the model is applicable to more complex
motile cells will contribute to understanding of the molecular
mechanisms of the cell migration.
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